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Protoheme and small quantities o f heme a were isolated and purified from the wild type and 

the developmental mutant, C-2 A', o f Scenedesmus obliquus. In fast growing synchronized WT 
cells and greening cells of the mutant protoheme could be labeled with [ l - l4C]glutamate and 
[2-14C]glycine. The labeling o f heme a was ambiguous and o f minor quantity. During rapid 
chlorophyll biosynthesis the turnover o f protoheme was determined by a pulse-chase experi­
ment to have a half-life o f 2 h. At the current stage o f investigations the question, whether 
[2-l4C]glycine is incorporated into protoheme via the Shemin pathway or via photorespiration 
or refixation o f l4COz during general metabolism remains open.

Introduction

The m ajor porphyrin  pigment groups in plants 
are the m agnesium  porphyrins (chlorophylls) and 
the iron  porphyrins (hemes). Two hemes are well 
know n, heme a, the prosthetic group of cyto­
chrom e c oxidase, and protohem e, the prosthetic 
group o f the enzymes peroxidase and  catalase and 
o f the cytochrom es which are involved in both, the 
m itochondrial and  the photosynthetic electron 
transport chain.

5-Aminolevulinic acid (ALA) is the common 
precursor o f bo th  the magnesium and  the iron po r­
phyrins. A LA  can be synthesized either from 
glutam ate via the C 5-pathway [1] or from glycine 
and succinyl Co A via the Shemin pathw ay [2]. 
It was shown for various organism s that chlo­
rophylls and hemes can be labeled by feeding 
radioactive precursors of porphyrin biosynthesis 
[3, 4],

In Scenedesmus in which both pathw ays to ALA 
have been dem onstrated  [5-8] we tried to label the 
hemes with bo th  radioactive precursors, [1-14C]- 
g lutam ate and [ l - 14C]glycine or [2-14C]glycine. 
These labelings and  the purification o f the labeled 
hemes are supposed to  lay the foundation for later 
experim ents to  identify the pathw ays by which 
hemes are synthesized in Scenedesmus obliquus.

Abbreviations: ALA, 5-aminolevulinic acid; WT, wild 
type; PCV, packed cell volume; HPLC, high perform­
ance liquid chromatography.
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Experimental

Organisms and growth conditions

Cells o f the wild type (W T) and the developm en­
tal m utant, C-2 A' [9], o f the green alga Scenedes­
mus obliquus were em ployed for the experiments 
described in this com m unication. Synchronized 
cultures o f  the W T [10] were grown under a 14 h 
light (20 W -m ~2) to 10 h dark  regime in liquid in­
organic m edium  and percolated with air enriched 
with 3% C 0 2 [11]. A t the beginning o f each life 
cycle (onset o f illum ination) cultures were diluted 
to a density o f 3.7 * 106 cells x m l-1 w ith a photo- 
electrically controlled dilution device [12]. Cells o f 
C-2 A' were cultured under heterotrophic condi­
tions [13] in the dark  for 60 h. A t this stage the end 
o f the logarithm ic grow th phase is reached with a 
density o f 10-11 (il packed cell volume (PCV) 
per ml.

Conditions o f  incubations with labeled precursors

H eterotrophically grown cells (60 h) o f the m u­
tant were harvested by centrifugation (1400 x g; 
5 min), the pelleted cells resuspended in 250 ml of 
the standard  inorganic grow th m edium  and trans­
ferred to regular culture tubes ( 0  3.7 cm; length 
42 cm). G reening was initiated by illum ination 
with white light (20 W -m ~2); the cell suspension 
was continuously aerated with 3% C 0 2 in air.

Both, synchronized wild type and m utan t cells 
were supplem ented with 1 m M  glutam ate and 1 m M  

glycine and  incubated in parallel experim ents for 
6 h  with either [ l -14C]glutam ate, [ l - I4C]glycine or 
[2-14C]glycine. The uptake o f the radioactive pre­
cursors during the incubation was assayed by de-
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term ining the am ount o f radioactivity left in 100 jal 
o f medium separated from  the cells. Radioactivity 
was m easured by liquid scintillation counting 
using 5 ml A qualum a (Baker, G roß-G erau).

Pigment extraction

Following to incorporation  o f labeled sub­
strate the cells were harvested by centrifugation. 
For pigm ent extraction the algal pellet was sus­
pended in 80% aqueous acetone containing 0.01 m 
N H ,. Cells (approx. 75^1 PCV m l-1) were dis­
rupted in this m edium  in a Vibrogen cell mill 
(Biihler, Tübingen) for 15 min as described before
[14]. The resulting crude cell-free hom ogenate was 
centrifuged and the resulting pellet was then re­
extracted 10 times with cold 80%  aqueous acetone 
to remove all the chlorophyll.

Non-covalently bound hemes were extracted 
afterw ards by a modified m ethod described first 
by Stillman and G assm an [15]: The pellet was sus­
pended in cold 90%  aqueous acetone containing 
5% conc. HC1 (v/v). The m ixture was stirred for 
10 min on ice and for an additional 10 min at room  
tem perature. A fter centrifugation (1400 * g; 
5 min) the supernatan t was collected and the pellet 
was reextracted in the same way. Both super- 
natan ts were com bined as the crude heme extract.

Purification o f  hemes

The crude heme extract in acidified acetone was 
mixed with diethyl ether and cold w ater was added 
until the phases separated. The hem e-containing 
ether phase was collected and  extraction o f the 
acidified ace to n e -w a te r phase was repeated two 
times. The com bined ether phases were stored for 
at least 1 h at - 1 7  °C to freeze out the excess 
water.

Subsequently, the ether was separated from  the 
ice and evaporated under reduced pressure. The 
residue was dissolved in a m ixture o f pyridine and 
acetone (1:20 (v/v)). F o r anion exchange chrom a­
tography a Fractogel TSK 650 colum n (diam eter: 
0.5 cm; length: 0.5 cm) in the acetate form, as de­
scribed for DEAE-cellulose by O m ata and M urata  
[16], was used. The solvent system described for 
the elution o f a D EA E-sepharose colum n by 
W einstein and Beale [17] was employed in a m odi­
fied form.

The heme containing solution was applied to the 
column and washed with acetone to  remove the 
non-binding ß-carotene which is partly  extracted 
together with the hemes. Then 80% aqueous ace­
tone (v/v) was used to elute oxidation products o f 
chlorophyll which were sometimes present in the 
extract. Afterwards hemes were eluted with 90% 
acetone (v/v) containing 2% (v/v) glacial acetic 
acid.

F o r the preparation o f standards o f  the iron 
porphyrins large am ounts of unlabeled culture 
material o f m ixotrophically grown Euglena gracilis 
or heterotrophically grown Scenedesmus m utan t 
C -2A ' were used. The protohem e and heme a o f 
these extracts were separated by elution o f the 
Fractogel column with a step gradient o f glacial 
acetic acid (0.25%, 0.5% , 2.0% (v/v)) in 90%  ace­
tone (v/v). The colum n m aterial was norm ally dis­
carded after chrom atography of radioactively 
labeled samples.

The hem e-containing fraction was reextracted 
with diethyl ether and the diethyl ether extract then 
treated as described above prior to  evaporation. 
The residue was dissolved in 20 |il 0.1 m N H 3, 60 |il 
ethanol and 20 1̂ 2.0 m acetic acid. It was further 
purified by HPLC on a reversed phase Nucleosil 
100-10 C 18 column ( 0  0.4 mm; length 25 cm) 
with a particle size o f 10|im . The H PL C  equip­
ment consisted o f 2 pum ps (K ontron LC 410), a 
program m er (K ontron M odel 200), an  absorbance 
detector (K ontron U vikon 720 LC), a 20 |il loop 
and a precolum n (M erck, D arm stadt, G erm any). 
The solvent system was 98% ethano l:2M  acetic 
acid = 70:30 (v/v). The flow rate was 0.8 ml • m in- 1 
and the absorbance o f the eluted fractions was 
m easured at 402 nm.

F or the preparation o f heme a it was necessary 
to collect the heme a containing fraction o f the 
first H PLC  separation, reextract it w ith ether and 
prepare it for a second chrom atography by H PLC  
as described above. The samples were rechrom ato­
graphed and the heme a containing fractions re­
tained. The heme containing fractions o f 5 H PLC- 
runs were pooled and used for quantification.

Quantification o f  the hemes

The purified hemes were identified by their ab ­
sorption maxima as reduced pyridine-hem ochro- 
mogens. Spectra of protohem e were recorded as



B. D rechsler-Thielm ann et al. ■ Isolation and Labeling o f Hemes in Scenedesmus 35

described by F u rhop  and Smith [18]. The sample 
was dissolved in 0.5 ml pyridine and 2.1 ml water. 
Just before the recording, 0.25 ml N aO H  (1 m ) 

were added and  the solution was divided into two 
aliquots. One was oxidized with ferricyanide and 
one was reduced by adding a few crystals o f dithio- 
nite which was stored in small portions under 
vacuum  a t - 1 7  °C. Then the reduced minus oxi­
dized difference spectrum was recorded. Heme a 
was m easured in 90% aqueous pyridine after re­
duction w ith a few crystals o f dithionite against a 
reference w ithout porphyrin.

The concentration o f the hemes in the eluted 
fractions from  H PLC  were determined in this sol­
vent using the absorption  coefficients for air oxi­
dized hemes: 144 m M " 1 at 398 nm for protohem e 
and 123 m M “ 1 a t 406 nm for heme a [ 17].

Low concentrations of heme a were determined 
by m easuring the peak area o f the H PLC elution 
profile. The correlation between peak area and 
concentration  was determ ined by a standard  curve 
m easured w ith different concentrations o f a heme 
a standard  th a t had been previously isolated from  
m ixotrophically grown Euglena gracilis and pu ri­
fied w ith the system described above.

Chemicals

R adioactive com pounds were purchased from 
A m ersham  (Braunschweig, Germ any), Fractogel 
from  M erck (D arm stadt, G erm any) and all other

reagents and solvents o f purified grade from  M erck 
or A ldrich (Steinheim, G erm any).

Results

Uptake o f  radioactive substrates

In order to  m easure the uptake ability, cells o f 
the synchronized W T and o f the developm ental 
m utan t C -2A ' during greening were incubated 
with l4C-labeled substrates. The uptake o f sub­
strates during the incubation  period was deter­
mined by m easuring the rem aining radioactivity in 
the culture m edium after different periods of incu­
bation. The time course o f the up take o f substrates 
in greening m utan t cells and synchronized W T 
cells is shown in Fig. 1. In both  cases the labeled 
glycines were taken up faster and m ore effectively 
than glutam ate. A fter a 6 h incubation  period 
m ore than  90%  o f the glycines were taken up in 
both  cultures, whereas the uptake o f [ l-14C]glu- 
tam ate reached only abou t 60% .

Purification o f  the hemes

Protohem e and heme a were extracted with aci­
dified acetone (see M aterials and M ethods) and 
were further purified by a com bination o f gel- and 
ion-exchange-chrom atography. In  contrast to the 
systems described by W einstein and  Beale [17] and 
Schneegurt and Beale [19] we used Fractogel TSK- 
650 instead o f D EA E-Sepharose. W hen preparing
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Fig. 1. A: Uptake o f radioactive substrates by synchronized cells o f  the wild type o f  Scenedesmus obliquus during the 
first 6 h o f  irradiation. The uptake was determined by measuring the activity o f the culture medium after different 
times o f incubation. The culture medium contained 1 m M  unlabeled glutamate and glycine. Symbols: O 
[ l - l4C]glutamate; V [2-l4C]glycine; ▼ [ l-14C]glycine.
B: Uptake o f  radioactive substrates by the developmental-mutant C-2A' o f Scenedesmus obliquus during the early 
phase o f greening in white light (20 W m '2). See also Fig. 1 A. Symbols: O [ l - l4C]glutamate; V [2-l4C]glycine; T 
[ l -14C]glycine.
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standards of heme a and protohem e from  large 
am ounts o f unlabeled culture m aterial both  tetra- 
pyrroles were separated by elution o f the Fracto- 
gel-column with a stepwise gradient o f acetic acid 
(0.25% ; 0.5% ; 2.0% ) in 90%  acetone. The elution 
of the different hemes was m onitored by the 
change o f the absorp tion  m axim um  in the eluted 
fractions (heme a: 406 nm; protohem e: 398 nm).

W einstein and Beale [17] described the separa­
tion o f protohem e and heme a by elution from  
D EA E-Sepharose with 0.5%  acetic acid in 80% 
acetone. Protohem e was eluted before heme a in 
that system. In our system heme a was eluted be­
fore protohem e using 0.25%  and 0.5%  acetic acid 
in 90%  acetone. Protohem e was retained on the 
colum n after the elution o f heme a. In order to 
elute it in a small volum e and a sharp band, 2%  
(v/v) acetic acid in 90%  acetone (v/v) was used. 
The elution profile shown in Fig. 2 was obtained 
with heme extracts from  Euglena gracilis, because 
from  this organism  greater am ounts o f hemes 
could be isolated. However, identical profiles were 
also obtained with Scenedesmus.

F or identification the heme a containing frac­
tion was extracted w ith ether. A fter evaporation  o f

E lution  Volume [mil

Fig. 2. Elution profile o f a chromatographic separation 
o f a heme-extract prepared from Euglena gracilis on a 
Fractogel-TSK-650-column (for details see Materials 
and Methods). The column was eluted with a stepwise 
gradient o f acetic acid in acetone (concentrations 
are shown at the top o f  the figure). Flow rate was 
lm l min“1. Symbols: — O------ O—  absorption maxi­
mum; — • ------ • — absorbance.

the ether the residue was dissolved in 90%  (v/v) 
aqueous pyridine and a pyridine-hem ochrom o- 
gene spectrum  [20] was recorded. The heme- 
a-fraction we obtained, following the separation 
from  protohem e on the Fractogel-colum n, shows 
two m ajor absorption bands a t 426 and 584 nm, a 
small peak at 524 nm and a shoulder at 559 nm  in­
dicating a small am ount o f protohem e present in 
this fraction. F o r the preparation  of a pure heme a 
standard  this fraction was further purified by 
H PLC.

In labeling-experiments we used small am ounts 
o f culture m aterial (100 or 250 ml). To avoid a loss 
in labeled products, the heme extracts we prepared 
in these experiments were no t separated into p ro ­
toheme and heme a by ion-exchange chrom atogra­
phy on Fractogel. Rather, lipids, carotenes and 
degradation products o f chlorophylls, which were 
also labeled, were separated from  the hemes by 
elution o f the Fractogel-colum n with pure, respec­
tively 80% aqueous acetone. The hemes retained 
on the colum n during this procedure were eluted 
with 2% acetic acid in 90% acetone and subse­
quently separated by HPLC.

W ith the HPLC-system described in M aterials 
and M ethods, protohem e and heme a could be 
separated. Because o f the high am ount o f p ro to ­
heme relative to heme a in the samples the hemes 
were not fully separated from  each other by a sin­
gle run on the reversed-phase column. Therefore, 
the heme a containing fractions were collected 
from the first H PLC elution and separated from  
rem aining protohem e in a second H PLC run. The 
elution diagram s o f two subsequent runs o f a p ro ­
tohem e and heme a containing sample are shown 
in Fig. 3.

The absorption  spectra o f the hemes purified by 
H PLC  as reduced pyridine hem ochrom ogens, are 
shown in Fig. 4. The absorption  maxima agree 
with published data for heme a [20] and protohem e
[18].

N o radioactive rem nants were recognized on the 
colum n m aterial under our experim ental condi­
tions.

Incorporation o f  labeled precursors into the hemes

In all our experiments we were able to recover 
radioactivity in the protohem e containing frac­
tions o f the H PLC eluate. Table I shows the spe­
cific activities o f the 14C-labeled substrates, the



B. Drechsler-Thielmann et al. ■ Isolation and Labeling o f Hemes in Scenedesmus 

1st Separation

37

Elution Time [min]

Fig. 3. Elution profiles o f  protoheme (indicated by “1”) 
and heme a (indicated by “2”) after separation by HPLC 
with a reversed phase column (Nucleosil 100-10 C 18 
(Macherey-Nagel, Düren, Germany); particle size 
10 nm). The mobile phase was 98% ethanol and 2 m  
acetic acid 70:30 (v/v). Flow rate was 0.8 ml min“1. The 
hemes were extracted from Scenedesmus obliquus and 
purified first by ion-exchange-chromatography on Frac- 
togel.

W avelength Lnm]

Fig. 4. Absorption spectra o f protoheme and heme a 
extracted from Scenedesmus obliquus after separation 
by HPLC (see Fig. 3). Spectra were recorded with an 
U VIK O N dual beam spectrophotometer (Kontron, 
Eching, Germany). Light path was 1 cm.

am ount o f uptake o f the substrates and the incor­
poration  o f radioactivity into protohem e, sum m a­
rized from  different experiments. The degree of in­
corporation  is expressed as specific radioactivity 
o f the labeled protohem e and as percentage o f p ro ­
tohem e synthesized from  exogenous substrates of 
the total am ount o f protohem e. The m ethod for 
calculating the am ount o f p roduct synthesized 
from  exogenous substrate described by W einstein 
and Beale [17] is based on the assum ptions th a t for

Table I. Specific activity and uptake o f the substrate applied to algal cultures in in vivo labeling experi­
ments (see Materials and Methods section for methods employed) and the incorporation o f  these sub­
strates into protoheme (for isolation and purification see Materials and Methods). The amount o f pro­
toheme synthesized from exogenous substrate was calculated as described by Weinstein and Beale [17],

Specific activity 
o f substrate 
[dpm • nm ol-1]

Uptake 
o f substrate 
[%]

Specific activity 
o f protoheme 
[dpm nm ol“1]

Protoheme synthesized 
from exogenous substrate 
[%]

Mutante C-2 A'
[ l -14C]glutamate 269 ±  4 81.5 ±  7.6 268 ±  67 14.5 ±  3.6
[2-14C]glycine 22 6 ±  49 89.6 ± 4 .2 37 ±  11 2.3 ± 0 .3
[ l - l4C]glycine 293 ± 134 95.6 ±  1.3 9 ±  6 0.3 ± 0 .2

Wild type

[ l -14C]glutamate 352± 100 64.5 ± 5 .8 245 ±  62 13.0 ±  1.7
[2-14C]glycine 29 9 ±  85 96.2 ±  1.7 72 ±  9 3.0 ±  0.5
[ l -14C]glycine 27 0 ±  51 96.7 ±  1.7 28 ±  16 1.4 ±  1.0
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the synthesis o f 1 mol o f product, 8 mol o f substrate 
are needed and th a t the intracellular pool o f sub­
strate is negligible relative to  the am ount o f exo­
genous substrate added to the cell suspensions. 
Thus the am ount o f p roduct synthesized from  the 
exogenous substrate is calculated according to the 
following formula:

Radioactivity Product recovered [dpm] =
Spec, activity Substrate [dpm nm ol”1] x 8

product ex0g Substrate [nmol].
This value, when expressed as percentage o f the 

to tal am ount o f isolated product, allows the com ­
parison o f the isolated am ounts o f protohem e, 
even if the specific activity o f substrates or the 
am ount o f culture m aterial applied, differs. It is 
also norm alized for possibly existing differences in 
intracellular pool sizes o f protohem e.

The values in Table I show that a high am ount 
o f radioactivity was incorporated  into protohem e 
when cells were incubated w ith [ l -14C]glutam ate 
and m uch less when incubated w ith [2-14C]glycine. 
The am ount o f radioactivity incorporated  into the 
porphyrin  in the experim ents with [ l -14C]glycine 
was negligible.

W hen the incorporation  o f  different substrates 
into heme a were com pared am biguous results 
were noted. In some experim ents no significant in­
corporation o f radioactivity into heme a was de­
tected. In two experim ents, one with wild type 
cells and the o ther one with m utan t cells, the heme 
a containing fraction eluted by H PLC  was ra ­
dioactive. Activity in these fractions was increased 
by a factor o f 10 relative to the fractions eluting 
before and after the heme a. The specific activities 
for heme a calculated from  these m easurem ents 
were 1200 dpm  nm ol“1 and 1040 dpm  nm ol“1 in 
the m utant cells and 570 d p m -n m o l"1 and 
800 dpm -nm ol-1 in the wild type cells when incu­
bated with [ l-14C]glutam ate or [2-14C]glycine, re­
spectively. N o incorporation  o f 14C from  [1-14C]- 
glycine was found in the experim ent with the m u­
tan t cells, but in the wild type cells the specific ac­
tivity o f the isolated heme a was calculated to  be 
400 dp m -n m o l“1. The am ount o f heme a isolated 
in these experim ents was abou t 0.3 nmol.

Turnover o f  protoheme

Because o f the long incubation time we used in 
these experiments a possible turnover o f the p ro to ­

heme had to be taken into account. Therefore, 
pulse chase experiments were carried ou t w ith the 
fast greening m utant cells. The m utan t cells were 
chosen since Castelfranco and Jones [21] reported 
that a turnover o f protohem e in greening barley 
leaves is favoured under conditions o f a high rate 
o f chlorophyll synthesis. [ l -14C]glutam ate was 
used as substrate since it had been shown to  be the 
most effective precursor for the labeling o f p ro to ­
heme. The time course for the developm ent o f the 
specific activity o f protohem e in a pulse-chase-ex- 
perim ent is shown in Fig. 5. Cells were incubated 
for 6 h with the labeled substrate (pulse) which was 
then washed out and replaced by unlabeled sub­
strate (chase). Protohem e was isolated from  sam ­
ples taken at various times after the radioactive 
substrate was washed out and the am oun t o f ra ­
dioactivity incorporated was determ ined. D uring 
the first hour after the chase the specific rad ioac­
tivity o f protohem e rose by about 20% . However, 
in the following 2 h the specific activity o f p ro to ­
heme dropped to 27%  o f the peak value obtained 
1 h after the chase o f radioactivity. A fter 18 h the 
specific activity o f protohem e was only 16% o f  the 
peak value.

20

10 1

Illumination Time [h i
Fig. 5. Pulse-chase-experiment with [ l -14C]glutamate ap­
plied as radioactive substrate to greening cells o f  the pig- 
ment-mutant C-2 A' o f Scenedesmus obliquus (for incu­
bation conditions see Materials and M ethods). The incu­
bation period with and without the radioactive substrate 
is indicated at the top o f the figure. The specific activity 
o f the protoheme isolated at different times after the 
chase (O) was calculated as percentage o f  the highest 
specific activity which was reached 1 h after the chase. 
The total amount o f protoheme isolated ( • )  is also 
shown.
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Discussion

The presence o f the different biosynthetic p a th ­
ways leading to ALA, the C 5-pathw ay [1] and the 
Shem in-pathway [22], has been investigated in 
m any plants. The synthesis o f chlorophylls via the 
C 5-pathway seems to be com m on in plants, while 
the mechanisms o f heme synthesis were found to 
vary in different organisms.

F or the unicellular green alga Scenedesmus obli­
quus it was also shown that chlorophylls are syn­
thesized via the C 5-pathway [23], but the biosyn­
thesis o f hemes has not been investigated in this 
organism.

In this investigation a modified m ethod for the 
isolation o f hemes from Scenedesmus was em­
ployed. The results show th a t protohem e can be la­
beled by different radioactive precursors o f A LA- 
biosynthesis. Fu ture studies will be required to 
evaluate the participation o f both pathw ays to 
ALA in the synthesis of the hemes in Scenedesmus.

The system described here for the separation of 
protohem e and heme a by anion-exchange-chro- 
m atography with Fractogel TSK  650 is very useful 
for the preparation  of a crude heme a p reparation  
starting from  large am ounts o f plant m aterial. 
Since the ratio  o f protohem e to  heme a is high in 
plants, the removal of the m ajority  o f protohem e 
by anion-exchange chrom atography facilitates the 
subsequent preparation of pure heme a by H PLC . 
Only one run on HPLC is sufficient to separate the 
heme a in these extracts from  the rem aining traces 
o f protohem e.

W einstein and  Beale [17] report an inverse elu­
tion pattern  o f protohem e and heme a from  the 
D EA E-Sepharose column. W e could not confirm  
their results with either the Fractogel-colum n, nor 
w ith separations on the D EA E-m atrix with respect 
to the expected polarity characteristics o f  the 
substances to be separated. Since no details are 
given by W einstein and Beale [17], the discrepancy 
remains unexplained.

O ur labeling-experiments w ith l4C-substrates 
show that [ l- ,4C]glutamate and [2-14C]glycine are 
incorporated into protohem e in wild type and 
m utant cells o f C-2 A ' o f Scenedesmus. 
[ l -14C]glutamate was more effective in labeling 
protohem e (3.5 times in W T cells; 7 times in 
C-2 A'); however, a significant incorporation o f 
label from [2-14C]glycine was always detected.

Similar labeling patterns were obtained by 
W einstein and Beale [24] with Cyanidium calda- 
rium  when the culture m aterial was incubated for 
7 h w ith radioactive substrates. However, the 
au thors explain the labeling o f protohem e with 
[2-14C]glycine by a distribution o f activity in the 
general m etabolism  rather than through the She- 
m in-pathw ay. This discrepancy will be subject o f 
further investigations.

O ur results concerning labeling o f heme a with 
labeled glycine and glutam ate varied. In some ex­
perim ents the specific activity was evenly d istribu t­
ed between both  hemes while in others the specific 
activity o f heme a was even higher than that noted 
for the protohem e fraction. Since the am ount of 
heme a isolated in our experiments was always 
very low (about 2%  o f the am ount o f protohem e), 
we do not consider the labeling o f these small 
am ounts o f heme a meaningful enough to draw  
any conclusion from  it.

Hem e a was shown to be synthesized from  p ro ­
tohem e in Staphylococcus [25], If  this would also 
be true for plant m aterial, the specific activities o f 
protohem e and heme a should be similar if both 
porphyrins w ould tu rn  over with the same rate. 
However, ou r results would be consistent, if heme 
a were lacking in con trast to protohem e any tu rn ­
over. The existence o f a turnover o f protohem e 
was indeed deduced by Castelfranco and Jones 
[21] from  the incorporation  o f l4C-labeled precur­
sors in to  protohem e in greening barley leaves. 
They also found a labeling o f protohem e in the 
absence o f a net synthesis. These results are, how ­
ever, no t fully conclusive, since the authors did not 
do pulse-chase experiments.

In greening cells o f C-2 A' we showed by a pulse- 
chase experim ent tha t a considerable part o f the 
cellular protohem e has a turnover. This explains 
why protohem e can be labeled with radioactive 
precursors o f porphyrin-biosynthesis even though 
the cytochrom e level o f the cells does not change 
during greening [13]. O ur results also show that 
approxim ately 20%  o f the cellular protohem e has 
no turnover. W hether this portion  of the p ro to ­
heme pool fulfills a special function in the cell or 
w hat kind o f m echanism  prevents it from  being 
degraded cannot be deduced from  our data.

It is assum ed from  these results that the m ajor 
p a rt o f  the protohem e in Scenedesmus is synthe­
sized via the C 5-pathw ay and a smaller portion is
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synthesized via the Shem in-pathway. However, la­
beling o f protohem e by [2-l4C]glycine via reactions 
o f photorespiration, via the general m etabolism  of 
glycine or refixation o f l4C 0 2 in photosynthesis 
cannot be totally excluded. Since the role o f the 
Shem in-pathway in p lant-porphyrin biosynthesis 
is still a m atter o f controversy. A detailed study on 
the participation o f the two biosynthetic pathw ays 
to ALA in the synthesis o f protohem e in Scenedes­

mus obliquus will be a subject o f future investiga­
tions.
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